| walmart | 生成式AI | GAI | GenAI | AI開發 | AI治理

【大規模快速打造生成式AI應用的關鍵】從開發、維運到治理,Walmart全靠一站式AI開發平臺

大規模發展生成式AI應用,會衍生出開發、管理、治理等不同面向的挑戰。面對這些挑戰,Walmart的利器是多年平臺工程及MLOps經驗,以及整合所有開發和管理需求的AI開發平臺

2024-09-20

| ML Pipeline | AI開發 | MLOps | AI落地 | 協作 | DevOps | 人工智慧 | AI應用 | MLOps解決 方案 | ML模型自動化 | AI維運 | Line

Line AI開發的關鍵基礎架構──ML Universe關鍵功能大公開

涵蓋了從模型實驗、Pipeline的持續部署與交付、自動化建立Pipeline,以及模型的持續訓練、持續部署、持續監測等流程

2021-04-08

| ML Pipeline | AI開發 | MLOps | AI落地 | 協作 | DevOps | 人工智慧 | AI應用 | MLOps解決 方案 | ML模型自動化 | AI維運 | Line

【靠ML協作平臺加速AI落地】Line如何用MLOps重構AI開發流程

Line去年正式上線了一套加速AI開發的關鍵基礎架構平臺,要讓不同角色各司其職,藉由更緊密分工協作來系統性落地AI

2021-04-07

| ML Pipeline | AI開發 | MLOps | AI落地 | 協作 | DevOps | 人工智慧 | AI應用

【AI開發也要擁抱DevOps】企業規模化落地AI關鍵是MLOps(上)

隨著企業AI走出實驗階段,開始分化出多種開發角色,如何透過打造如產線般緊密分工的協作方法,來加速落地AI?關鍵就是MLOps的實踐

2021-04-06

| ML Pipeline | AI開發 | MLOps | AI落地 | 協作 | DevOps | 人工智慧 | AI應用 | MLOps解決方案 | ML模型自動化 | AI維運

企業規模化落地AI關鍵是MLOps(下)三大原因助MLOps快速興起

促使MLOps快速成長的原因之一,是COVID-19疫情帶動大環境快速改變,導致許多部署上線的模型在一夕間不敷使用,凸顯了AI維運的挑戰

2021-04-06