| 封面故事 | 機器學習 | AI | 日本Yahoo | Line | AI生產力 | 使用者特徵自動預測 | 使用者人格預測 | User Persona | Naver | K8s | ML

【Line AI生產力關鍵3:新一代使用者特徵自動預測系統】導入GPU和K8s叢集,靠ML大規模自動預測使用者特徵資料

未來光是日本用戶規模將達到3億人,如何讓使用者人格系統的屬性預測能力更強,Line去年夏天導入了GPU和K8s叢集,重新改造了這套系統

2021-11-22

| NLP | 生態圈 | HyperCLOVA | 朴懿彬 | 機器學習 | AI | MLOps | 使用者特徵自動預測 | 使用者人格預測 | User Persona | Naver | 日本Yahoo | 整併 | 封面故事 | Lupus | AI生產力

因應整併後3億日本用戶規模新考驗,Line從3大技術關鍵來強化AI生產力

今年3月,日本Line和日本Yahoo整併後,光是日本用戶規模就達到3億人,作為未來主要用戶服務核心的Line,如何因應用戶數暴增挑戰,繼續邁向AI公司轉型之路?關鍵是這3件事

2021-11-22